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Abstract. The percolation problem in the semi-infinite plane is discussed in terms of the 
two competing length scales [ ( p ) ,  the correlation length, and d, the distance from the 
surface. We propose a crossover hypothesis for the percolation probability P (  d, [( p)) and 
identify two limiting regimes. For [( p )  << d the critical behaviour is governed by the usual 
exponent p while for [( p) >> d a new critical exponent, pS, is required. Using simple RSRG 
procedures we obtain a sequence of approximations to p , / p  and these are seen to show 
good agreement with a recent Monte Carlo simulation of the system. Finally we indicate 
how the techniques are applied to the semi-infinite three-dimensional case. 

1. Introduction 

The problem of site percolation may be treated using real space renormalisation group 
( RSRG) techniques (Reynolds et al 1977). Analogous methods exist for bond percola- 
tion (Young and Stinchcombe 1975). The original lattice, with site occupation probabil- 
ity p ,  is mapped onto one isomorphic to it, with an accompanying dilatation of length 
scale by a factor b. The renormalised probability of occupation is given by 

p ’ =  &(PI. (1.1) 

For systems with dimensionality greater than one this recursion relation has a 
non-trivial unstable fixed point in 0 < p < 1 which represents the critical density of sites 
at which an infinite cluster of connected sites appears. At this critical density one 
observes singular behaviour in such quantities as mean (finite) cluster size, root-mean- 
square distance between connected sites (‘correlation length’), mean number of finite 
clusters per site, etc (Essam 1980). Each singularity is characterised by its respective 
critical exponent. Furthermore linearising the transformation p ‘  = Rb( p )  about the 
critical point yields the thermal (rather than magnetic) eigenvalue A, from which, for 
example, the ‘correlation length’ critical exponent Y may be derived in the usual way. 

If, however, in two dimensions, the occupation probability for sites in the z > 0 
upper half-plane is set to zero we are left with the problem of percolation in the 
semi-infinite plane. One may allow the occupation probability for percolation, or 
analogously, the coupling constant between sites in the Ising model, to be different at 
the surface to that in the bulk. Indeed, by doing so, workers have investigated the 
possibility of surface transitions in both semi-infinite percolation (De Bell 1979) and 
semi-infinite Ising systems (Dunfield and Noolandi 1980) in two and three dimensions. 

In this paper we study site percolation in the semi-infinite plane, setting a uniform 
occupation probability p in z S 0 ,  and we apply Niemeyer-van Leeuwen type RSRG 
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techniques (Niemeyer and van Leeuwen 1974) to the system in the two limiting regimes 
t ( p )  >> d and t ( p ) < <  d. In particular we postulate that the percolation probability P 
obeys a scaling form and exhibits crossover behaviour between power law forms 
governed by the usual exponent p for sites deep in the bulk ( t ( p ) < <  d )  and a new 
exponent, ps, as one approaches the surface ( f (  p )  >> d). We develop a sequence of 
approximations leading to improved estimates of the quantity pJp. Our results are 
consistent with this hypothesis and give good qualitative agreement with recent Monte 
Carlo simulations (Watson 1985, unpublished). 

2. Scaling form and surface-bulk crossover 

Consider a two-dimensional lattice of sites with site occupation probability p ,  0 in z 0 
and z > 0 respectively. Define the bulk correlation length ( as the root-mean-square 
distance between connected sites far from the surface, where the mean is taken only 
over sites in finite clusters. For a site near the surface, two competing characteristic 
length scales enter: its distance d from the surface is one, and ( ( p )  is the other. In 
such a case, we define the percolation probability P as the probability that a site A at 
z = -d is occupied and that it is connected to an infinite number of other sites. In the 
terminology of phase transition theory this is the order parameter and it is non-zero 
only for p > p c .  Denote this probability as P( d, f (  p)). This is the usual exact definition 
for P ( d ,  ( ( p ) ) ;  however, as we show below, it needs to be modified to make itself 
amenable to the scaling formalism. 

From the above considerations we expect the percolation probability to satisfy the 
following scaling form in the neighbourhood of the critical point: 

where F ( x )  is a universal scaling function with the following limiting behaviour: 

F ( x )  + 1, a sx+0 ,  

F ( x )  + Bx-", asx+oo, 

and p c  satisfies pc  = Rb( pJ. 
Since [( p )  = D( p - p J "  we observe that for t( p) >> d 

P(d, (( p ) )  = (BCD-"/d -") (  p -pc)p+"u. (2.3) 

This expression defines the su$ace critical exponent, 

ps = p + va. (2.4) 

If one imagines the semi-infinite system to have arisen from an infinite one from 
which a line of parallel bonds has been removed it is clear then that the scaling function 
F ( [ (  p ) / d )  may be interpreted as the following conditional probability: 

F ( t ( p ) / d )  = Prob(site at z = - d  is on infinite cluster in semi-infinite 
planelsite is on infinite cluster in infinite plane). 

In particular then F (x )  S 1, for all x, with equality only for x + 0. 
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3. Real space renormalisation group approach for bulk and surface exponents 

As mentioned above, the definition of the percolation probability must be expressed 
in a manner accessible to the RSRG procedure. One may regard P ( d ,  t( p ) )  as the sum 
of probabilities of certain ‘classes of configurations’ (‘events’) of the sites on the lattice 
such that the site A is on the infinite cluster in the region z S 0 .  An approximate 
definition for P(  d, t( p ) )  is obtained therefore by incorporating only a subset of these 
events into P. It follows that considering a large number of events will yield a more 
reliable P ( d ,  .$( p ) )  and therefore more reliable critical exponents will be derived from 
that definition. Such a generalised approach is given in 0 4. In the present section we 
consider the crudest model with only one event as follows. 

Dejnition 1. Site A is in the infinite cluster i f  
(i)  it is occupied; 
(ii) it is in a cell which transforms to an occupied renormalised site; 
(iii) the renormalised site is in the infinite cluster of the renormalised lattice given 

that it is occupied. 
This defines P ( d ,  f (  p ) ) .  

The infinite class of lattice configurations satisfying the above definition constitutes 
an event. Notice also that definition 1 is inductive. 

respectively. 
Denote p b ( p ) = p ( d , t ( p ) )  and P A p ) = P ( d , t ( p ) )  for t ( p ) < < d  and t ( p ) > > d  

3.1. Scaling within bulk, e( p )  << d 

Definition 1 was introduced by Thouless (1978) to deal with the bulk exponent p. We 
first discuss this case, i.e. the treatment of sites very deep in the bulk, [( p )  <c d. We 
use a blocking transformation and the rule R,, to determine whether a renormalised 
site is occupied. The lattice of sites is partitioned into identical groups or cells of sites. 
A cell of sites in the original lattice is transformed into a site of the renormalised 
lattice. According to the rule R,,, a cell is transformed into an occupied renormalised 
site if and only if there is a cluster in the cell which spans the cell either horizontally 
or vertically. 

As shown by Thouless, blocking on the triangular lattice with length scale dilatation 
factor b = 6 (figure 1 ( a ) )  yields 

p‘=p3+3p2(1 - p ) .  (3.1) 

This has a non-trivial fixed point at the exact value p c = f  at which the percolation 
eigenvalue is A = (dp’/dp), = $. Definition 1 above then implies 

pb ( p = p [2p ( 1 - p + p * 1 pb ( p ’1 / p ‘. (3.2) 

P’/ P -- $. (3.3) 

Linearising this result near the percolation threshold, t( p) >> 1, yields 

However, in the bulk Pb( p )  = C (  p -pc)’, p > pc .  From this we obtain A’ = :. This then 
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(a ) (bl 

Figure 1. Blocks used for the real-space renormalisation of the site percolation problem 
in the bulk ([( p )  << d )  for ( a )  the triangular lattice with b = fi and ( b )  the square lattice 
with b = 2. 

gives for the bulk exponent p 
/3 = ( log~) / ( log~)=0.710.  (3.4) 

The same procedure may be used on the square lattice when b = 2  (figure l (6) ) .  
Here one obtains 

which yield p c  = 0.382, A = 1.53 and so p = 1.13 1,  
Comparing these values for p with the corresponding series result p = 0.139 iO.003 

(Blease et a1 1978) highlights a twofold inadequacy in the above procedure. Firstly, 
considering only one event gives a severe underestimate for the numerical value of A 
and hence overestimates p. This problem is a result of the crudeness of definition 1. 
However, it leads to a corresponding overestimate in p,, the surface exponent, as we 
demonstrate below. This problem is to a certain extent eliminated if we are interested 
in the ratio of p and p,. Indeed encouraging results are observed below for p s / p .  
Secondly, the choice of such small cells in the blocking introduces an uncontrolled 
approximation due to cell interfacing problems. These interfacing problems become 
less significant if one uses larger blocking cells, i.e. larger 6, as demonstrated by Reynolds 
et a1 (1980). One therefore expects definition 1 to yield improved results if one chooses 
larger cells in the blocking procedure. 

We wish to determine whether a particular site is present in the infinite cluster. 
When dealing with larger cells an ambiguity arises in the positioning of the cell relative 
to our site of interest. An average over cell positions must be taken. It is convenient 
to introduce the conditional RG transformation defined as the probability that a renor- 
malised site is occupied given that one of its constituent ‘original’ sites is occupied. 
Denote this by c b , s ( p )  for bulk and surface sites respectively. Notice that an average 
over original sites must be taken. Definition 1 then becomes 

pb,s(p)/p = cb,s(p)pb,s(p’)/p’* (3.7) 
Now consider the 6 = 3 blocking on the square lattice for sites with t ( p ) / d  << 1. 

Here we have 

p’=p9+9p8(1 -p)+36p7(1 -p)’+82p6(1 - ~ ) ~ + 9 3 p ~ ( 1  - P ) ~  

+ 44p4( 1 - p) ’  + 6p3( 1 - P ) ~ ,  (3.8) 
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Cb(P)=ps+8p7(1 -p)+28p6(1 -p)’+(164/3)p5(1 - p ) 3  

+(155/3)p4(1 -p)‘+(176/9)p3(1 - ~ ) ~ + 2 p ’ ( l  - P ) ~ .  (3.9) 

Using (3.7) above we obtain /3 = 0.717. 
In a b x b cell on the square lattice there are 2 b x b  possible distinct configurations 

of original sites, a subset of which configurations are ‘percolating’. To obtain the RG 

and conditional RG transformations one must determine the percolating configurations 
and weight each one appropriately. For b = 4 blocking, a FORTRAN program utilising 
the cluster multiple labelling algorithm of Hoshen and Kopelman (1976) was used to 
do this on a VAX 11/780 machine. Here an average over the 16 possible cell positions 
is taken for cb(s).  The results are summarised in table 1. 

Table 1. Results of successive approximations to P, P, and PJj3 using RSRG blocking on 
various semi-infinite systems. (i) Definition 1: P ( d ,  [( p ) ) / p  = P ( d /  b, [ (p‘ ) )C(p) /p’ .  
( i i )  Definition 2: P ( d ,  [ ( p ) ) / p  = P ( d / b ,  S ( p ’ ) ) C ( p ) / p ’ +  P ( d / b 2 ,  f ( p ” ) ) ( l -  C ( p ) )  
D(p ,p’ ) /p” .  ( i i i )  In 2D, Monte Carlo result for P,=0.41; D , / P  1 2 . 9 5  ( P  10.139) .  

Lattice type Defn of P b P  P s  P I P ,  

Triangular 
Triangular 
Triangular 
Triangular 
Square 
Square 
Square 
Square (diagonal cut) 
Square (diagonal cut) 
Square (diagonal cut) 
Square 
Square (diagonal cut) 
Simple cubic 
Simple cubic (1 : 1 : 1 cut) 

1 
2 
1 
2 
1 
1 
1 
1 
1 
1 
2 
2 
1 
1 

8 0.710 1.512 
0.472 1.207 

2 0.924 2.129 
2 0.525 1.352 
2 1.131 1.630 
3 0.717 1.305 
4 0.568 1.197 
2 1.131 2.499 
3 0.717 1.800 
4 OS68 1.600 
2 0.709 1.271 
2 0.709 1.650 
2 2.099 2.431 
2 2.099 3.482 

2.130 
2.557 
2.304 
2.575 
1.441 
1.820 
2.106 
2.210 
2.511 
2.817 
1.793 
2.327 
1.157 
1.659 

3.2. Scaling a t  surface ((( p )  >> d )  

We now treat sites on the surface, representing the limit of the regime ( ( p )  >> d. The 
probabilistic interpretation above for the scaling function F ( ( (  p ) / d )  S 1 implies p, 3 p. 
The geometrical origin of this difference lies in the fact that if a site on the surface of 
the semi-infinite plane is to be connected to the infinite cluster, it is constrained to do 
so via sites that are not above it. This constraint is relieved for sites deep in the bulk. 
Thus P b  > P, and so ps 3 p. We now proceed to evaluate p,. 

The surface constraint is incorporated naturally into the blocking procedure if one 
defines C , ( p ) ,  the surface conditional RG transformation, as the probability that a 
surface cell is occupied given that one of its constituent surface sites is occupied. As 
when calculating Cb(p), an average must be taken over possible positions of surface 
cell relative to the surface site; notice, though, that here certain surface cells contain 
sites that lie in z > 0 and that these sites are occupied with probability zero. This idea 
is illustrated in figure 2( a )  for b = surface blocking in the triangular lattice. In this 
case we obtain 

C,( p )  = i [ 2 p  + 3 ( 2 p  - p 2 )  +O]. (3.10) 
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(0) (bl 

Figure 2. Surface blocking for RS renormalisation of the semi-infinite percolation problem 
for (a )  the triangular lattice with b = A  and ( b )  the square lattice (diagonal surface cut) 
with b = 2. The surface site A has Z (the coordination number) possible surface cells over 
which an average is to be taken. Sites in z 0 and z > 0 are denoted by 0, 0 and are 
occupied with probability p, 0 respectively. 

Using P,( p )  = pC,( p ) P , (  p ’ ) / p ‘  for the percolation probability in (( p )  >> d it follows 
that ps= 1.51 which, using the corresponding result for p, gives P,/p - 2.13. 

We perform the analogous procedure for a site on the surface of a square lattice. 
With b = 2 blocking we find 

(3.11) CAP) = fI2p + 2[p3 + 3P2( 1 -P) + 2P(l -P)21> 

which yields PI-  1.630 and p, /p  -- 1.441. 
Both the above results are poor when compared with that obtained in a Monte 

Carlo investigation of the same system P , / P  -0.41/0.14-2.9. This is so for two 
reasons. Firstly, the spurious errors in both pS and p arising from the small cell 
blocking and from the limitations of definition 1 for P( d, [( p ) )  compound each other. 
Secondly, we note that the renormalised surface site ‘senses’ the surface only as a 
result of some of its constituent sites having probability zero of being occupied. It is 
this property of the surface cells that embodies the essential physics of the semi-infinite 
system. However in, for example, the b = 2 surface blocking on the square lattice, two 
of the four distinct surface blocks do not then sense the surface at all and so contribute 
to keeping C,( p )  artificially high and hence ps low. This problem is inherent in small 
cell blocking and disappears when one uses larger cells. However, if one considers a 
semi-infinite square lattice with a surface along the diagonal (so that nearest neighbours 
on the surface are next-nearest neighbours of the lattice) we then expect (see figure 
2(6)) the effect of the surface to be taken into account somewhat more faithfully. 
Universality arguments ensure that the physical value of Ps is left unchanged by this 
Ploy. 

We therefore treat b = 2 blocking on the square lattice with a diagonally cut surface. 
In the bulk p is unaffected while on the surface we have 

c,(p) =:{2[ p2+p( l  - p ) ]  -t [ p 3  + 3p2(1 - p )  -t 2p( 1 - p ) ’ ]  +O>.  (3.12) 

Thus, using Ps( p )  = pC,( p ) P (  p ’ ) / p ’  yields the result ps - 2.50 and p s / p  = 2.210. 
As mentioned above, it is possible to extract improved values of p, /P if one uses 

larger cells. Scaling on the surface, when using larger cells, is analogous to that in the 
bulk with the additional requirement that sites present in the surface cells but in z > 0 
are taken to have occupation probability zero. As an illustration we consider surface 
scaling in the 6 = 3 blocking of the square lattice with a diagonal cut. The surface 
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conditional RG transformation is in this case given by 

C, (p )  =${[ p 8 +  8p7(1 - p )  +28p6( 1 - P ) ~ +  5 5 p 5 (  1 - p ) 3  
+ 51p4( 1 - P ) ~ +  18p3( 1 -py+2p2(  1 - p ) 7  +2[ p7+7p6( 1 - p )  
+20p5(1 - ~ ) ~ + 2 4 p ~ ( i  --PI’+ i ip3(1 -p)4+p2(1  - p ) ’ ]  

+[p5+5p4(1 -p)+4p3(1 -p)’]+2[pS+5p4(1 -p)+5p3(1 - ~ ) ~ ] + 3 ( 0 ) }  
(3.13) 

and we obtain ps= 1.800 and so ps /p  = 2.511. The process is analogous for a straight 
cut. As anticipated, the b = 4 blocking on the square lattice gives results which are in 
even closer agreement with those obtained in the Monte Carlo simulation. 

4. Extension of the renormalisation group approach: the ‘two-event’ definition 

As one moves from small to larger cells it is apparent that p,/p is approaching a 
limiting value. As explained above, the square lattice with a diagonal cut captures the 
surface properties well and so gives good results for p, /p  given the level of sophistica- 
tion of the ‘one-event’ recursive definition of P , ( p )  and Pb(p). The absolute values 
of p and p, converge less quickly onto the expected limits. This convergence may be 
accelerated by including further events into the definition of P b  and P,. 

Definition 2. Site A is in the infinite cluster if: 
either 

(i)  it is occupied; 
(ii) it is in a cell which transforms to an occupied renormalised site; 
(iii) the renormalised site is in the infinite cluster of the renormalised lattice given 

that it is occupied; 
or 

(i)  it is occupied; 
(ii) it is in a cell which transforms to an unoccupied renormalised site; 
(iii) the (absent) renormalised site is part of a cell which transforms into a twice 

renormalised site that is occupied and present in the finite cluster of the twice renor- 
malised lattice. 

This redefines P (  d, t( p ) ) .  Definition 2 is a two-event second-order recursive 
definition. The above two events are mutually exclusive and so one may add their 
respective probabilities. In principle one may extend this process to obtain more 
accurate definitions of P (  d, e( p ) ) .  

In this case, we have, for bulk and surface sites respectively, 

pb,s( p ) / p  = c b , s (  p)Pb,s(p’)/p’+ ( - cb,s( p)lDb,s(  PI p’lpb.s( p ” ) / p ”  (4-1) 

where p” = R(  p ‘ )  = R2( p )  and D( p ,  p ’ )  is the probability that a twice renormalised site 
is occupied given that one of its (once) renormalised sites is unoccupied. 

We apply this result to the b = Jf blocking on the triangular lattice. In the bulk 
we have 

pb(p)/p = (2p -p2)Pb(p’)/p’+[1 - (2p -p2)lp’2pb(p”)/p” (4.2) 
which on linearising yields p = 0.472. 
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For sites at the surface we have 

E‘,( p ) / p  = :[2p + 3 ( 2 p  - p 2 )  + OIp,(p’)/p’+ (1 -6Pp + 3 ( 2 p  - p 2 )  + 011 

x : ( 2 p ‘ 2 + j p 2 p ’ ) P s ( p ’ ’ ) / p ” .  (4.3) 

From this it follows that PS= 1.207 and p S / P  = 2.557. 

on the triangular lattice and to blocking on the square lattice (see table 1). 
Similar calculations are seen to give improved results when applied to b = 2 blocking 

5. Extension to the semi-infinite slab 

The above ideas may in principle be applied to semi-infinite lattices in three dimensions. 
Unfortunately the computations, even using the relatively straightforward definition 1 
for the percolation probability, are prohibitively involved for large cells. However, 
for completeness, we here present a b = 2 blocking calculation for the three-dimensional 
simple cubic lattice. 

For sites in the bulk we obtain, using definition 1, 

( 5 . 3 )  

While on the surface with a 1 : l :  1 cut, for example, one obtains for the surface 
conditional probability C,( p )  

where P A p ) / p  = CA~)p,(p’) /p‘ .  
The results of these and other calculations are summarised in table 1. 

6. Discussion 

Our approach to site percolation in semi-infinite systems is based on identifying t( p ) /  d 
as a crossover variable in a scaling expression and thence determining the asymptotic 
(‘bulk’ and ‘surface’) behaviour of the system. In particular we have constructed RS 
scaling methods to yield the bulk and surface exponents, p and p, respectively, for 
the percolation probability. The results, given in table 1, give convergence of the ratio 
p, /p  to a value in agreement with unpublished Monte Carlo data ( p , / p  = 2.95) obtained 
by B Watson in 1985 for d = 2. By elaborating the definition of the percolation 
probability we were able to obtain improved results for each value of cell size b. 
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In § 5 we demonstrated that the ideas are extended trivially to semi-infinite systems 
in three dimensions and results indicate that p s / p  is closer to 1 than in two dimensions. 
Although no numerical work is available to confirm this observation, it is consistent 
with the idea that the surface is less important in higher dimensions: the ‘surface 
constraint’ on sites at z = 0, that they must be connected to the infinite cluster via sites 
below them, becomes less stringent as the Euclidean dimensionality of the system is 
increased. 

We now consider the relationship of p , p s  and the crossover exponent a to the 
structure of the infinite cluster in the semi-infinite system. If we enclose a portion of 
the infinite cluster within a hypercube of side L then the mass M of sites scales as 

M CC ~ ‘ 1  (6.1) 

where df defines the fractal dimensionality (Mandelbrot 1982) of the infinite cluster. 
A simple scaling argument (e.g. Stauffer 1979) yields 

d f = d  - p l v  (6.2) 

where d is the Euclidean (or embedding) dimensionality. 

via sites in z S 0, and the associated exponent is given by 
It is useful to define i( p ) ,  the RMS distance between sites on the surface connected 

If D, is the fractal dimensionality of the set of sites on the infinite cluster at z = 0, 
an argument analogous to that for the bulk yields 

In fact it may be shown that is= v and so using the definition of the crossover 
exponent LY = ( p ,  - p ) /  v we obtain 

Further, addition of codimensions (Mandelbrot 1982) yields the result that the 
fractal dimension of the set of sites in the intersection of the infinite cluster with a 
hyperplane is df- 1 .  We have therefore shown that LY is the difference in dimension 
of the above set of sites and a subset of that set comprising those sites which are joined 
to an infinite number of sites on one particular side of the hyperplane. 

Finally a study of the homogeneity properties of the appropriately defined generat- 
ing functions indicates that the usual scaling relations between the percolation 
exponents describing the critical behaviour apply to surface as well as bulk exponents. 
Further work therefore needs to be done to determine the one remaining independent 
surface critical exponent. 
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